Quantcast
Channel: Jason Andrews Blog
Viewing all articles
Browse latest Browse all 33813

WoW! TSMC Sticks Whole Wafers Together

$
0
0
Today it is the TSMC Technology Symposium. As always, Cadence is making several announcements jointly with TSMC. 5nm and 7nm+ This isn't the biggest surprise announcement of the year. Cadence is collaborating with TSMC on 5nm and 7nm+ high-performance processes primarily targeted at advanced mobile and high-performance computing (HPC). There is certification of the digital and signoff flow, the custom/analog flow, and the library characterization flow. There is a press release, but you can pretty much take last year's, or the year before's, and just lower the numbers. The entire Cadence tool portfolio supports the entire TSMC process portfolio. TSMC has said (and I'm assuming they will re-iterate in the tech symposium today) that 5nm is on-track for Q1 2019. They also announced last year that they will build the world's first 3nm fab in Tainan, so you can get ahead and write your own future press release. WoW Advanced Packaging Technology If you do as I did, and google "wow packaging" then the first hit is a Pinterest page showing 40 amazing packages: for sandwiches, wine, pasta, and even The Beatles White Album. But no chips, not even the kind made from potatoes. WoW stands for Wafer-on-Wafer and is the name for TSMC's 3D stacking technology. For chips of the silicon kind of course. This is a third 3D technology, to join the two existing TSMC packaging technologies CoWoS and InFO (which respectively stand for chip-on-wafer-on-substrate and integrated-fan-out). Wafer-on-wafer involves two wafers. The upper wafer is flipped over onto the lower. Obviously, the pads on the two wafers need to be mirror images of each other so that they align. The two wafers are then joined, bonding layer to bonding layer. It is part of the secret-sauce how TSMC makes that work. Of course, that immediately creates a problem: how do you get the signals out given that the two wafers only have their backs exposed. The answer is that the one wafer has thru-silicon-vias (TSVs) for the I/Os. The naming is actually very confusing, since what I called the upper wafer, as in the one on top in the picture to the right, is conventionally called the "bottom" wafer, since it will be packaged using flip-chip technology, and so top and bottom are switched in the flip. So it is the top wafer that has the TSVs (which is then flipped) and appears on the bottom in the picture to the above right. Then the die are separated by sharks with laser beams...or diamond saws, which sounds almost as good. By the way, I do know that technically the plural of die is dice. But to anyone in the industry, the word "die" conjures up chips, and "dice" conjures up craps. So I just use "die" as if it is both singular and plural. Like "cod". Two cod are still cod. Obviously, since this is working at the wafer level, the so-called "known good die" problem is aggravated. Even if a die is known to be bad from wafer sort, it is still going to get bonded to a (probably) good die on the other wafer, which will eventually get discarded. So yields need to be high enough to make the savings from working at the wafer level cover the fact that some good die are going to be sacrificed. Furthermore, the packaging technologies can be combined, using WoW to join wafers, and then putting them on an interposer, creating a 2-die cube. In fact, it is possible to vertically stack more than two wafers if all except the very bottom one (the one that ends up on top...yes, your head does hurt) have TSVs to get the signals between the layers. Cadence already supports TSMC's earlier 3D technologies CoWoS and InFO (your little fingers get a workout on the shift keys typing these packaging names). There are multiple designs in production. WoW expands on this with support for 3D stacking with larger die sizes and denser I/O pins. What Cadence and TSMC announced today is that the Cadence flows are certified for TSMC's WoW Reference Flow 1.0. The table above shows just how much advanced packaging permeates the whole flow. It is similar to features like double patterning that "changes everything" and is not just a point solution added to a couple of tools. The three columns, from left to right, are packaging design tools (colloquially "Allegro"), analog and custom IC design tools ("Virtuoso"), and digital/signoff tools ("Innovus"). This is probably more than you want to know, especially if you are reading this first thing in the morning before your coffee. But changes for WoW include: Innovus: Supports single database top-die including front/back-side routing and backside-through-silicon-via (BTSV) support, creating connections between multiple die Quantus: Supports back-side routing layers, sub-circuit replacement for BTSV and die-to-die interface coupling capacitance extraction with die shrinkage factor, enabling electrical analysis between die Voltus: Provides die-level power map generation, enabling concurrent power analysis of multiple die Tempus: Provides multi-die static timing analysis (STA) support, enabling a checking of timing paths that cross between multiple die Physical Verification System (PVS): Offers design rule checking (DRC) and layout vs. schematic (LVS) for die with BTSV, interface alignment and connectivity checks, ensuring that the two die connect correctly Virtuoso: Includes features for bump placement and alignment on top of the existing PDK via the Virtuoso Incremental Technology Database (ITDB), creating connections between multiple die OrbitIO: Provides inter-substrate connectivity checking, device flattening, auto-port connectivity and configurable module definitions to manage top-level connectivity, enabling unified planning of die interconnect and alignment Sigrity: Offers electrical modeling of the combined die, interposer and package, validating that the power and ground distribution is sufficient for multiple die and package, and thermal analysis with interposer and die analysis capabilities that allow co-simulation with Voltus IC Power Integrity Solution, enabling inclusion of temperature into concurrent power analysis of multiple die Sigrity XcitePI: Provides accurate chip- and interposer-level interconnect model extraction, enabling validation of high-speed signal propagation in the time and frequency domains Sigrity SystemSI: Automatic construction of complete model-based interconnect topologies used to drive simultaneous switching noise (SSN/SSO) analysis for concise eye-diagram validation OK, go and get a coffee. TSMC has not previously announced anything about WoW, but they have a whole session in the Tech Symposium today on 3D packaging technology. I expect to get more information there. So watch for my blog posts later this week on what they said. Sign up for Sunday Brunch, the weekly Breakfast Bytes email.

Viewing all articles
Browse latest Browse all 33813

Trending Articles